La Sinapsis
La sinapsis es la relación funcional de contacto entre las terminaciones de las células nerviosas. Se trata de un concepto que proviene de un vocablo griego que significa “unión” o “enlace”.
Este proceso comunicativo entre neuronas comienza con una descarga químico-eléctrica en la membrana de la célula emisora (presináptica). Cuando dicho impulso nervioso llega al extremo del axón, la neurona segrega una sustancia que se aloja en el espacio sináptico entre esta neurona transmisora y la neurona receptora (postsináptica). A su vez, este neurotransmisor es el encargado de excitar a otra neurona.
De acuerdo al tipo de transmisión del impulso nervioso, la sinapsis puede clasificarse en eléctrica o química. En la sinapsis eléctrica, los procesos pre y postsináptico son continuos debido a la unión citoplasmática por moléculas de proteínas tubulares, que permiten que el estímulo pase de una célula a otra sin la necesidad de una mediación química. De esta forma, la sinapsis eléctrica brinda baja resistencia entre neuronas y un retraso mínimo en la transmisión sináptica ya que no existe un mediador químico.
La sinapsis química es el tipo de sinapsis más usual. En estos casos, el neurotransmisor hace de puente entre las dos neuronas, se difunde a través del espacio sináptico y se adhiere a los receptores, que son moléculas especiales de proteínas ubicadas en la membrana postsináptica.
La unión de los neurotransmisores y los receptores de la membrana postsinápticas genera modificaciones en la permeabilidad de la membrana, mientras que la naturaleza del neurotransmisor y de la molécula del receptor determinará si el efecto producido será de excitación o inhibición de la neurona postsináptica.
Tipos de sinapsis
Sinapsis eléctrica:
Una sinapsis eléctrica es aquella en la que la transmisión entre la primera neurona y la segunda no se produce por la secreción de un neurotransmisor, como en las sinapsis químicas (véase más abajo), sino por el paso de iones de una célula a otra a través de uniones gap, pequeños canales formados por el acoplamiento de complejos proteicos, basados en conexinas, en células estrechamente adheridas.
Las sinapsis eléctricas son más rápidas que las sinapsis químicas pero menos plásticas; por lo demás, son menos propensas a alteraciones o modulación porque facilitan el intercambio entre los citoplasmas de iones y otras sustancias químicas. En los vertebrados son comunes en el corazón y el hígado.
Las sinapsis eléctricas tienen tres ventajas muy importantes:
1. Las sinapsis eléctricas poseen una transmisión bidireccional de los potenciales de acción, en cambio la sinapsis química solo posee la comunicación unidireccional.
2. En la sinapsis eléctrica hay una sincronización en la actividad neuronal lo cual hace posible una coordinada acción entre ellas.
3. La comunicación es más rápida en la sinapsis eléctricas que en las químicas, debido a que los potenciales de acción pasan a través del canal proteico directamente sin necesidad de la liberación de los neurotransmisores.
Sinapsis química:
La sinapsis química se establece entre células que están separadas entre sí por un espacio de unos 20-30 nanómetros(nm), la llamada hendidura sináptica.
La liberación de neurotransmisores es iniciada por la llegada de un impulso nervioso (o potencial de acción), y se produce mediante un proceso muy rápido de secreción celular: en el terminal nervioso presináptico, las vesículas que contienen los neurotransmisores permanecen ancladas y preparadas junto a la membrana sináptica. Cuando llega un potencial de acción se produce una entrada de iones calcio a través de los canales de calcio dependientes de voltaje. Los iones de calcio inician una cascada de reacciones que terminan haciendo que las membranas vesiculares se fusionen con la membrana presináptica y liberando su contenido a la hendidura sináptica. Los receptores del lado opuesto de la hendidura se unen a los neurotransmisores y fuerzan la apertura de los canales iónicos cercanos de la membrana postsináptica, haciendo que los iones fluyan hacia o desde el interior, cambiando el potencial de membrana local. El resultado es excitatorio en caso de flujos de despolarización, o inhibitorio en caso de flujos de hiperpolarización. El que una sinapsis sea excitatoria o inhibitoria depende del tipo o tipos de iones que se canalizan en los flujos postsinápticos, que a su vez es función del tipo de receptores y neurotransmisores que intervienen en la sinapsis.
La suma de los impulsos excitatorios e inhibitorios que llegan por todas las sinapsis que se relacionan con cada neurona (1000 a 200.000) determina si se produce o no la descarga del potencial de acción por el axón de esa neurona.
No hay comentarios:
Publicar un comentario